
Technische Anforderungen und Auswahl von Basismaterialien

Low Dk und Low Loss Basismaterialien

I ECHNOLAW GILIDI

Basismaterialien mit geringem Dk / Df

Einfluss von Dk und Df auf die Signalübertragung

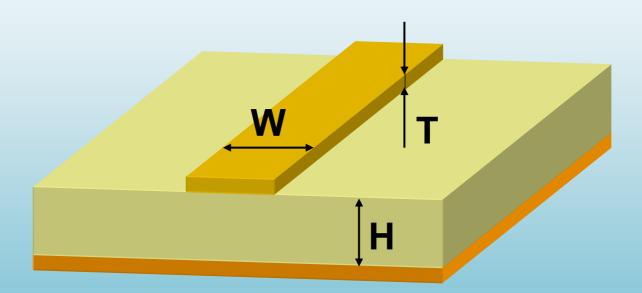
Low Dk

v_Ü = Übertragungsgeschw.

c = Lichtgeschwindigkeit

Low Df

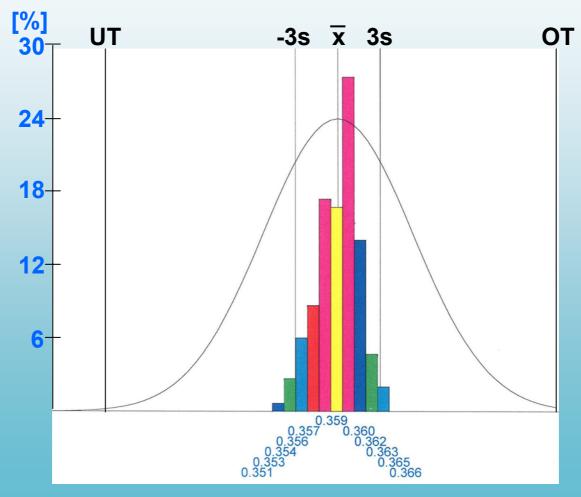
$$L \sim f * \sqrt{Dk} * Df$$


L = Verlust

f = Frequenz

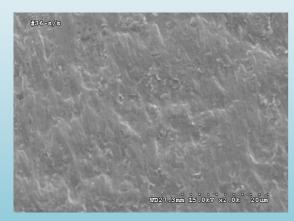
$$Z_0 = \frac{87}{\sqrt{Dk + 1,41}} * \ln \frac{5,98 \text{ H}}{0,8 \text{ W} + \text{T}}$$

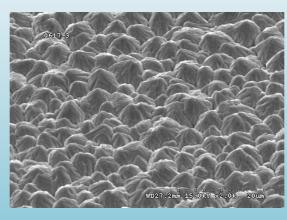
IPC-TM-650 2.5.5.5 Test-Muster micro-strip line



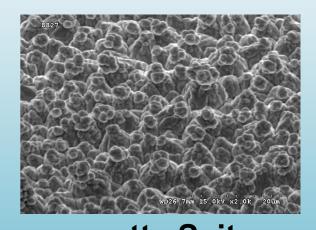
$$Z_0 = \frac{87}{\sqrt{Dk + 1,41}} * \ln \frac{5,98 \text{ H}}{0,8 \text{ W} + \text{T}}$$

Laserdickenmessung


Beispiel 0,36 mm Basismaterial



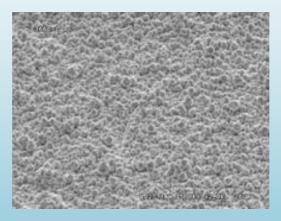
Kupferfolien-Treatment


Standard-Treatment

shiny Seite

matte Seite

matte Seite+ Treatment


Kupferfolien-Treatment

Standard-Treatment

matte Seite + Treatment

Very Low Profile -Treatment

matte Seite + VLP Treatment

Feinstleiter

Wie erreicht man Low Dk / Df im Basismaterial?

Der Dk-Wert des Basismaterials nimmt linear mit zunehmendem Harzgehalt ab. Df verhält sich proportional zu Dk.

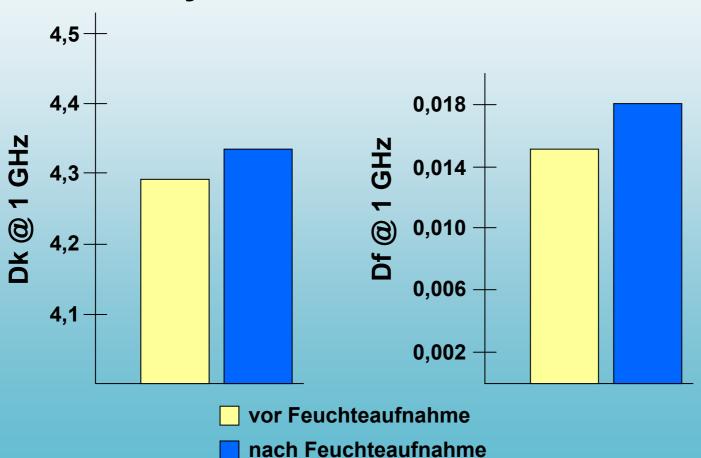
FR-4 Dk_{Laminat} =
$$Dk_{E-Glas} - Dk_{Harz} * \%$$
 Harzgehalt
FR-4 Dk_{Laminat} $\approx 6.7 - 3.5 *$ RC %

Low Dk / Df Basismaterial

Low Dk / Df Harz

oder / und

Low Dk / Df Glasgewebe


Einfluss von Füllstoffen auf Dk / Df

	NP-175	NP-175F
	ohne Füllstoff	mit Füllstoff
Kupferhaftung 35 µm	1,84 N/mm	1,73 N/mm
Dk @ 1 GHz	4,54	4,61
Df @ 1 GHz	0,0154	0,0131
Desmear	77 μg/cm²	84 µg/cm²
Bohrerverschleiß	15,6 %	19,2 %

Einfluss von Feuchtigkeit auf Dk / Df

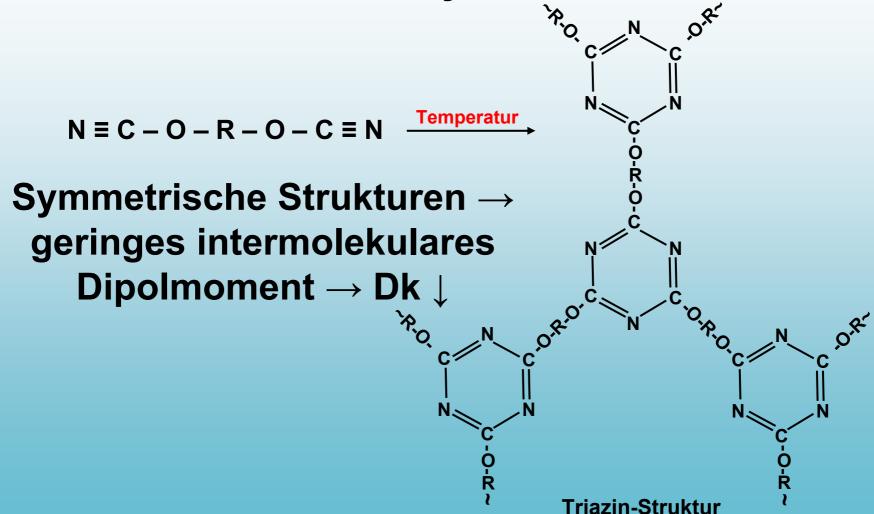
FR-4 Harzsystem

Einfluss des Harzsystems auf Dk / Df

Epoxydharz

$$\begin{array}{c} \mathsf{H_2C} \longrightarrow \mathsf{CH} - \mathsf{CH_2} - \mathsf{O} \longrightarrow \mathsf{CH_3} \\ \mathsf{CH_3} \longrightarrow \mathsf{O} - \mathsf{H_2C} - \mathsf{HC} - \mathsf{CH_2} - \mathsf{O} \longrightarrow \mathsf{CH_3} \\ \mathsf{CH_3} \longrightarrow \mathsf{CH_2} - \mathsf{O} - \mathsf{H_2C} - \mathsf{CH_2} \\ \mathsf{CH_3} \longrightarrow \mathsf{CH_3} \longrightarrow \mathsf{CH_2} - \mathsf{CH$$

Polare Gruppen → erhöhtes intermolekulares Dipolmoment → Dk ↑


Einfluss des Harzsystems auf Dk / Df

Reduzierung der polaren Gruppen

weniger polare Gruppen → Dk ↓

Einfluss des Harzsystems auf Dk / Df



	Taiwan halogenfrei	Taiwan	USA	Taiwan	USA
Harzsystem	Ероху	Epoxy/PPO	Epoxy/PPO	Epoxy/CE	Epoxy/CE
Füllstoff	ja	ja	nein	nein	ja
Tg °C (DSC)	190 (DMA)	180	180	210	219
Haftfestigkeit [N/mm] (35 µm)	1,49	1,14	1,09	1,93	1,23
½ h PCT, Lötschock	> 10 min	> 10 min	> 10 min	10 min	10 min
T288 [min]	> 40	> 40	> 40	10,2	12,7
Td [°C]	360	360	360	327	330
Dk @ 1 GHz	4,60	4,00	3,97	3,82	3,89
Df @ 1 GHz	0,011	0,012	0,012	0,009	0,009

Einfluss des Glastyps auf Dk / Df

Einfluss des Glastyps auf Dk / Df

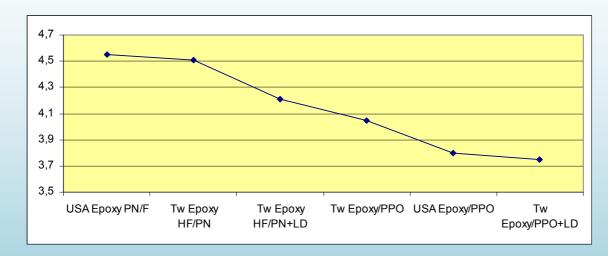
	E-Glas	D-Glas	Nan Ya LD-Glas	
SiO ₂	54,0%	74,5%		
Al_2O_3	14,0%	0,3%		
CaO	17,5%	0,5%	Modifiziertes E- Glas in der	
MgO	4,5%	-		
B ₂ O ₃	8,0%	22,0%	Entwicklung	
Na ₂ O	< 0,6%	1,0%		
K ₂ O	< 0,6%	1,5%		
Dk @ 1 MHz	6,5 – 7,2	3,5 – 4,0	5,0 - 5,5	
Df @ 1 MHz	0,012 - 0,020	0,0010 - 0,0015	0,0055 - 0,0100	

CaO mit hoher Polarität

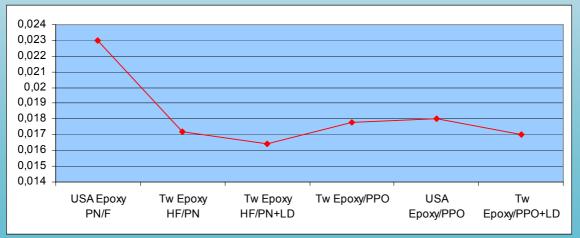
B₂O₃ mit geringer Polarität

$$ightarrow$$
 Low Dk / Df $ightarrow$ CaO \downarrow B₂O₃ \uparrow

Material-Qualifikation – OEM-Messergebnisse


	OEM I			OEM II	
Material	NPLD-II		NPL	.D-II	NPGN-170
Glastyp	E-Glas	E-Glas	E-Glas	LD-Glas	E-Glas
Harzgehalt	50 %	70 %	50 %	50 %	50 %
Dk @ 1GHz	3,988	3,503	4,05	3,75	4,508
Df @ 1GHz	0,0167	0,0185	0,0178	0,0170	0,0172

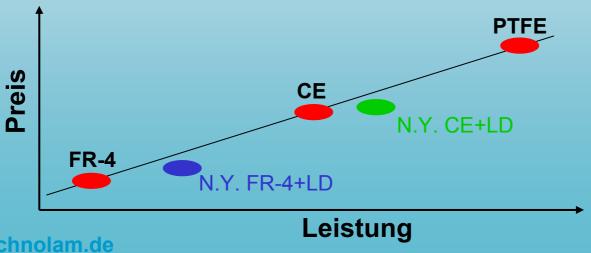
	Normal Loss	Mid Loss
OEM I Spez.	0,023	0,018



Dk / Df @ 5 GHz

Dk

Df


Übersicht von Low Dk-Materialien

Material	Vorteile	Nachteile
Polytetrafluor- ethylen	Dk ~ 2,2 ↓ Feuchteaufnahme (0,03%)	Tg ~ 19 °C, extrem schwierig zu prozessieren teuer (~ 10 x FR-4)
Cyanatester/Epoxy	Dk ~ 3,9 Tg 180 – 250 °C	Feuchteaufnahme teuer
Polyphenylenether/ Epoxy	Dk ~ 4,0 Tg 160 – 220 °C	schwierig zu prozessieren teuer
Bismaleimid- Triazin/Epoxy	Dk ~ 4,2 thermische Stabilität	teuer
(FR-4)	gut zu verarbeiten geringe Kosten	Dk ~ 4,6

Preis & Leistung von Laminaten

Harz Glas	FR-4	Epoxy/CE
E Glas	4,30	3,80
E-Glas	0,020	0,009
I D Clas	3,95	3,50
LD-Glas	0,017	0,0088

Zusammenfassung

- geringer Dk ermöglicht dünnere Multilayer oder breitere Leiterzüge bei gleicher Impedanz
- Low Dk-Materialien lassen sich schwieriger prozessieren als FR-4 und sind teurer
- der Df halogenfreier FR-4 Basismaterialien ist kleiner als der von bromierten FR-4 Materialien
- der Einsatz spezieller Glasgewebe wird den Einsatzbereich von FR-4 Basismaterialien für Low Dk / Df Anwendungen ausweiten

I ECHNOLAIVI G

the laminate company

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt:

Technolam GmbH

www.technolam.de

Volker Klafki

+49 2241 873735

v.klafki@technolam.de